About small eigenvalues of the Witten Laplacian
نویسندگان
چکیده
منابع مشابه
Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
This article follows the previous works [HKN] by Helffer-KleinNier and [HeNi1] by Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of ∆ f,h = −h∆ + |∇f(x)| − h∆f(x) , are considered as the small parameter h > 0 goes to 0. The function f is assumed to be a Morse function o...
متن کاملSmall eigenvalues of the Witten Laplacian acting on p-forms on a surface
In this article, we are interested in the exponentially small eigenvalues of the self adjoint realization of the semiclassical Witten Laplacian ∆ f,h, in the general framework of p-forms, on a connected compact Riemannian manifold without boundary. Our purpose is to notice that the knowledge of (the asymptotic formulas for) the smallest non zero eigenvalues of the self adjoint realization of ∆ ...
متن کاملSmall Eigenvalues of the Conformal Laplacian
We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.
متن کاملEigenvalues of the normalized Laplacian
A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...
متن کاملEigenvalues of the Conformal Laplacian
We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Analysis
سال: 2019
ISSN: 2578-5885,2578-5893
DOI: 10.2140/paa.2019.1.149