About small eigenvalues of the Witten Laplacian

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

This article follows the previous works [HKN] by Helffer-KleinNier and [HeNi1] by Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of ∆ f,h = −h∆ + |∇f(x)| − h∆f(x) , are considered as the small parameter h > 0 goes to 0. The function f is assumed to be a Morse function o...

متن کامل

Small eigenvalues of the Witten Laplacian acting on p-forms on a surface

In this article, we are interested in the exponentially small eigenvalues of the self adjoint realization of the semiclassical Witten Laplacian ∆ f,h, in the general framework of p-forms, on a connected compact Riemannian manifold without boundary. Our purpose is to notice that the knowledge of (the asymptotic formulas for) the smallest non zero eigenvalues of the self adjoint realization of ∆ ...

متن کامل

Small Eigenvalues of the Conformal Laplacian

We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.

متن کامل

Eigenvalues of the normalized Laplacian

A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...

متن کامل

Eigenvalues of the Conformal Laplacian

We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Analysis

سال: 2019

ISSN: 2578-5885,2578-5893

DOI: 10.2140/paa.2019.1.149